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Abstract—The simultaneous localisation and map building
(SLAM) problem asks if it is possible for an autonomous ve-
hicle to start in an unknown location in an unknown environ-
ment and then to incrementally build a map of this environ-
ment while simultaneously using this map to compute abso-
lute vehicle location. Starting from the estimation-theoretic
foundations of this problem developed in [1], [2], [3], this pa-
per proves that a solution to the SLAM problem is indeed
possible. The underlying structure of the SLAM problem is
first elucidated. A proof that the estimated map converges
monotonically to a relative map with zero uncertainty is
then developed. It is then shown that the absolute accuracy
of the map and the vehicle location reach a lower bound de-
fined only by the initial vehicle uncertainty. Together, these
results show that it is possible for an autonomous vehicle to
start in an unknown location in an unknown environment
and, using relative observations only, incrementally build a
perfect map of the world and to compute simultaneously a
bounded estimate of vehicle location.

This paper also describes a substantial implementation
of the SLAM algorithm on a vehicle operating in an out-
door environment using millimeter-wave (MMW) radar to
provide relative map observations. This implementation is
used to demonstrate how some key issues such as map man-
agement and data association can be handled in a practical
environment. The results obtained are cross-compared with
absolute locations of the map landmarks obtained by sur-
veying. In conclusion, this paper discusses a number of key
issues raised by the solution to the SLAM problem including
sub-optimal map-building algorithms and map management.

I. Introduction

The solution to the simultaneous localisation and map
building (SLAM) problem is, in many respects, a “Holy
Grail” of the autonomous vehicle research community. The
ability to place an autonomous vehicle at an unknown lo-
cation in an unknown environment and then have it build
a map, using only relative observations of the environment,
and then to use this map simultaneously to navigate would
indeed make such a robot “autonomous”. Thus the main
advantage of SLAM is that it eliminates the need for artifi-
cial infrastructures or a priori topological knowledge of the
environment. A solution to the SLAM problem would be
of inestimable value in a range of applications where abso-
lute position or precise map information is unobtainable,
including, amongst others, autonomous planetary explo-
ration, subsea autonomous vehicles, autonomous air-borne
vehicles, and autonomous all-terrain vehicles in tasks such

as mining and construction.

The general SLAM problem has been the subject of
substantial research since the inception of a robotics re-
search community and indeed before this in areas such as
manned vehicle navigation systems and geophysical sur-
veying. A number of approaches have been proposed to
address both the SLAM problem and also more simpli-
fied navigation problems where additional map or vehicle
location information is made available. Broadly, these ap-
proaches adopt one of three main philosophies. The most
popular of these is the estimation-theoretic or Kalman-
filter based approach. The popularity of this approach is
due to two main factors. Firstly, it directly provides both a
recursive solution to the navigation problem and a means
of computing consistent estimates for the uncertainty in
vehicle and map landmark locations on the basis of statis-
tical models for vehicle motion and relative landmark ob-
servations. Secondly, a substantial corpus of method and
experience has been developed in aerospace, maritime and
other navigation applications, from which the autonomous
vehicle community can draw. A second philosophy is to es-
chew the need for absolute position estimates and for pre-
cise measures of uncertainty and instead to employ more
qualitative knowledge of the relative location of landmarks
and vehicle to build maps and guide motion. This general
philosophy has been developed by a number of different
groups in a number of different ways; see ([4][5] and [6]).
The qualitative approach to navigation and the general
SLAM problem has many potential advantages over the
estimation-theoretic methodology in terms of limiting the
need for accurate models and the resulting computational
requirements, and in its significant “anthropomorphic ap-
peal”. The third, very broad philosophy, does away with
the rigorous Kalman filter or statistical formalism while re-
taining an essentially numerical or computational approach
to the navigation and SLAM problem. Such approaches in-
clude the use of iconic landmark matching ([7]), global map
registration ([8]), bounded regions ([9]) and other measures
to describe uncertainty. Notable are the work by Thrun
et. al. [10] and Yamauchi et. al. [11]. Thrun et. al.
use a bayesian approach to map building that does not
assume Gaussian probability distributions as required by
the Kalman filter. This technique while very effective for
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localisation with respect to maps, does not lend itself to
provide an incremental solution to SLAM where a map is
gradually built as information is received from sensors. Ya-
mauchi et. al. use a evidence grid approach that requires
that the environment is decomposed to a number of cells.
An estimation-theoretic or Kalman filter based approach

to the SLAM problem is adopted in this paper. A major
advantage of this approach is that it is possible to develop
a complete proof of the various properties of the SLAM
problem and to study systematically the evolution of the
map and the uncertainty in the map and vehicle location.
A proof of existence and convergence for a solution of the
SLAM problem within a formal estimation-theoretic frame-
work also encompasses the widest possible range of navi-
gation problems and implies that solutions to the problem
using other approaches are possible.
The study of estimation-theoretic solutions to the SLAM

problem within the robotics community has an interesting
history. Initial work by Smith et al. [12] and Durrant-
Whyte [13] established a statistical basis for describing re-
lationships between landmarks and manipulating geomet-
ric uncertainty. A key element of this work was to show
that there must be a high degree of correlation between
estimates of the location of different landmarks in a map
and that indeed these correlations would grow to unity fol-
lowing successive observations. At the same time Ayache
and Faugeras [14] and Chatila and Laumond [15] were un-
dertaking early work in visual navigation of mobile robots
using Kalman filter-type algorithms. These two strands
of research had much in common and resulted soon af-
ter in the key paper by Smith, Self and Cheeseman [1].
This paper showed that as a mobile robot moves through
an unknown environment taking relative observations of
landmarks, the estimates of these landmarks are all neces-
sarily correlated with each other because of the common
error in estimated vehicle location. This paper was fol-
lowed by a series of related work developing a number of
aspects of the essential SLAM problem ( [2] and [3] for ex-
ample). The main conclusion of this work was two fold.
Firstly accounting for correlations between landmarks in a
map is important if filter consistency is to be maintained.
Secondly that a full SLAM solution requires that a state
vector consisting of all states in the vehicle model and all
states of every landmark in the map needs to be maintained
and updated following each observation if a complete solu-
tion to the SLAM problem is required. The consequence
of this in any real application is that the Kalman filter
needs to employ a huge state vector (of order the num-
ber of landmarks maintained in the map) and is in gen-
eral, computationally intractable. Crucially, this work did
not look at the convergence properties of the map or its
steady-state behaviour. Indeed, it was widely assumed at
the time that the estimated map errors would not converge
and would instead execute a random walk behaviour with
unbounded error growth. Given the computational com-
plexity of the SLAM problem and without knowledge of
the convergence behaviour of the map, a series of approx-
imations to the full SLAM solution were proposed which

assumed that the correlations between landmarks could be
minimised or eliminated thus reducing the full filter to a
series of decoupled landmark to vehicle filters (see Renken
[16], ,Leonard and Durrant-Whyte [3] for example). Also
for these reasons, theoretical work on the full estimation-
theoretic SLAM problem largely ceased, with effort instead
being expended in map-based navigation and alternative
theoretical approaches to the SLAM problem.
This paper starts from the original estimation-theoretic

work of Smith, Self and Cheeseman. It assumes an au-
tonomous vehicle (mobile robot) equipped with a sensor
capable of making measurements of the location of land-
mark landmarks relative to the vehicle. The landmarks
may be artificial or natural and it is assumed that the
signal processing algorithms are available to detect these
landmarks. The vehicle starts at an unknown location with
no knowledge of the location of landmarks in the environ-
ment. As the vehicle moves through the environment (in
a stochastic manner) it makes relative observations of the
location of individual landmarks. This paper then proves
the following three results:
1. The determinant of any submatrix of the map covari-
ance matrix decreases monotonically as observations are
successively made.
2. In the limit as the number of observations increases, the
landmark estimates become fully correlated.
3. In the limit, the covariance associated with any single
landmark location estimate is determined only by the ini-
tial covariance in the vehicle location estimate.
These three results describe, in full, the convergence

properties of the map and its steady state behaviour. In
particular they show that
• The entire structure of the SLAM problem critically de-
pends on maintaining complete knowledge of the cross cor-
relation between landmark estimates. Minimizing or ignor-
ing cross correlations is precisely contrary to the structure
of the problem.
• As the vehicle progresses through the environment the
errors in the estimates of any pair of landmarks become
more and more correlated, and indeed never become less
correlated.
• In the limit, the errors in the estimates of any pair of
landmarks becomes fully correlated. This means that given
the exact location of any one landmark, the location of any
other landmark in the map can also be determined with
absolute certainty.
• As the vehicle moves through the environment taking
observations of individual landmarks, the error in the esti-
mates of the relative location between different landmarks
reduces monotonically to the point where the map of rela-
tive locations is known with absolute precision.
• As the map converges in the above manner, the error
in the absolute location of every landmark (and thus the
whole map) reaches a lower bound determined only by the
error that existed when the first observation was made.
Thus a solution to the general SLAM problem exists

and it is indeed possible to construct a perfectly accu-
rate map and simultaneously compute vehicle position esti-
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mates without any prior knowledge of vehicle or landmark
locations.
This paper makes three principal contributions to the so-

lution of the SLAM. Firstly, it proves three key convergence
properties of the full SLAM filter. Secondly, it elucidates
the true structure of the SLAM problem and shows how
this can be used in developing consistent SLAM algorithms.
Finally, it demonstrates and evaluates the implementation
of the full SLAM algorithm in an outdoor environment us-
ing a millimeter-wave radar sensor.
Section 2 of this paper introduces the mathematical

structure of the estimation-theoretic SLAM problem. Sec-
tion 3 then proves and explains the three convergence re-
sults. Section 4 provides a practical demonstration of an
implementation of the full SLAM algorithm in an outdoor
environment using MMW radar to provide relative obser-
vations of landmarks. An algorithm addressing pertinent
issues of map initialisation and management is also pre-
sented. The algorithm outputs are shown to exhibit the
convergent properties derived in Section 3. Section 5 dis-
cusses the many remaining problems with obtaining a prac-
tical, large scale, solution to the SLAM problem including
the development of sub-optimal solutions, map manage-
ment and data association.

II. The Estimation-Theoretic SLAM Problem

This section establishes the mathematical framework em-
ployed in the study of the SLAM problem. This framework
is identical in all respects to that used in Smith et. al. [1]
and uses the same notation as that adopted in Leonard and
Durrant-Whyte [3].

A. Vehicle and Land-Mark Models

The setting for the SLAM problem is that of a vehi-
cle with a known kinematic model, starting at an un-
known location, moving through an environment contain-
ing a population of features or landmarks. The terms fea-
ture and landmark will be used synonymously. The vehicle
is equipped with a sensor that can take measurements of
the relative location between any individual landmark and
the vehicle itself as shown in Figure 1. The absolute lo-
cations of the landmarks are not available. Without prej-
udice, a linear (synchronous) discrete-time model of the
evolution of the vehicle and the observations of landmarks
is adopted. Although vehicle motion and the observation of
landmarks is almost always non-linear and asynchronous in
any real navigation problem, the use of linear synchronous
models does not affect the validity of the proofs in Sec-
tion 3 other than to require the same linearisation assump-
tions as those normally employed in the development of
an extended Kalman filter. Indeed, the implementation
of the SLAM algorithm described in Section 4 uses non-
linear vehicle models and non-linear asynchronous obser-
vation models. The state of the system of interest consists
of the position and orientation of the vehicle together with
the position of all landmarks. The state of the vehicle at
a time step k is denoted xv(k). The motion of the vehicle
through the environment is modeled by a conventional lin-

xv

pi

 Features and Landmarks

Global Reference Frame
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Vehicle-Feature Relative
Observation

Fig. 1. A vehicle taking relative measurements to environmental
landmarks

ear discrete-time state transition equation or process model
of the form

xv (k+ 1) = Fv (k)xv (k) + uv (k+ 1) + vv (k+ 1), (1)

where Fv(k) is the state transition matrix, uv(k) a vector
of control inputs, and vv(k) a vector of temporally uncor-
related process noise errors with zero mean and covariance
Qv(k) (see [17] and [18] for further details). The location
of the ith landmark is denoted pi. The “state transition
equation” for the ith landmark is

pi(k+ 1) = pi(k) = pi , (2)

since landmarks are assumed stationary. Without loss of
generality the number of landmarks in the environment is
arbitrarily set at N . The vector of all N landmarks is
denoted

p =
[
pT

1 . . . pT
N

]T (3)

where T denotes the transpose and is used both inside and
outside the brackets to conserve space. The augmented
state vector containing both the state of the vehicle and
the state of all landmark locations is denoted

x(k) =
[
xT
v (k) pT

1 . . . pT
N

]T
. (4)

The augmented state transition model for the complete sys-
tem may now be written as


xv (k+ 1)

p1

...
pN


 =



Fv (k) 0 . . . 0

0 Ip1 . . . 0
...

...
. . . 0

0 0 0 IpN






xv (k)
p1

...
pN




+



uv (k+ 1)

0p1

...
0pN


 +



vv (k+ 1)

0p1

...
0pN



(5)

x(k+ 1) = F(k)x(k) + u(k+ 1) + v(k+ 1) (6)
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where Ipi
is the dim(pi)× dim(pi) identity matrix and 0pi

is the dim(pi) null vector.
The case in which landmarks pi are in stochastic motion

may easily be accommodated in this framework. However,
doing so offers little insight into the problem and further-
more the convergence properties presented by this paper
do not hold.

B. The Observation Model

The vehicle is equipped with a sensor that can obtain ob-
servations of the relative location of landmarks with respect
to the vehicle. Again, without prejudice, observations are
assumed to be linear and synchronous. The observation
model for the ith landmark is written in the form

zi(k) = Hix(k) +wi(k) (7)
= Hpi

p−Hvxv(k) +wi(k) (8)

wherewi(k) is a vector of temporally uncorrelated observa-
tion errors with zero mean and variance Ri(k). The term
Hi is the observation matrix and relates the output of the
sensor zi(k) to the state vector x(k) when observing the
i(th) landmark. It is important to note that the observa-
tion model for the ith landmark is written in the form

Hi = [−Hv ,0 · · ·0,Hpi
,0 · · ·0] (9)

This structure reflects the fact that the observations are
“relative” between the vehicle and the landmark, often in
the form of relative location, or relative range and bearing
(see Section 4).

C. The Estimation Process

In the estimation-theoretic formulation of the SLAM
problem, the Kalman filter is used to provide estimates
of vehicle and landmark location. We briefly summarise
the notation and main stages of this process as a neces-
sary prelude to the developments in Sections 3 and 4 of
this paper. Detailed descriptions may be found in [17],[18]
and [3]. The Kalman filter recursively computes estimates
for a state x(k) which is evolving according to the process
model in Equation 5 and which is being observed accord-
ing to the observation model in Equation 7. The Kalman
filter computes an estimate which is equivalent to the con-
ditional mean x̂(p|q) = E [x(p)|Zq] (p ≥ q), where Zq is
the sequence of observations taken up until time q. The er-
ror in the estimate is denoted x̃(p|q) = x̂(p|q)−x(p). The
Kalman filter also provides a recursive estimate of the co-
variance P(p|q) = E

[
x̃(p|q)x̃(p|q)T|Zq

]
in the estimate

x̂(p|q). The Kalman filter algorithm now proceeds recur-
sively in three stages:
• Prediction: Given that the models described in equa-
tions 5 and 7 hold, and that an estimate x̂(k|k) of the
state x(k) at time k together with an estimate of the co-
variance P(k|k) exist, the algorithm first generates a pre-
diction for the state estimate, the observation (relative to
the ith landmark) and the state estimate covariance at time

k + 1 according to

x̂(k+ 1|k) = F(k)x̂(k|k) + u(k) (10)
ẑi(k+ 1|k) = Hi(k)x̂(k+ 1|k) (11)

P(k+ 1|k) = F(k)P(k|k)FT(k) +Q(k), (12)

respectively.
• Observation: Following the prediction, an observation
zi(k+ 1) of the ith landmark of the true state x(k+ 1) is
made according to Equation 7. Assuming correct landmark
association, an innovation is calculated as follows

νi(k+ 1) = zi(k+ 1)− ẑi(k+ 1|k) (13)

together with an associated innovation covariance matrix
given by

Si(k+ 1) = Hi(k)P(k+ 1|k)HT
i (k) +Ri(k+ 1). (14)

• Update: The state estimate and corresponding state es-
timate covariance are then updated according to:

x̂(k+ 1|k+ 1) = x̂(k+ 1|k) +Wi(k+ 1)νi(k+ 1) (15)
P(k+ 1|k+ 1) = P(k+ 1|k)−Wi(k+ 1)×

S(k+ 1)WT
i (k+ 1) (16)

Where the gain matrix Wi(k+ 1) is given by

Wi(k+ 1) = P(k+ 1|k)HT
i (k)S

−1
i (k+ 1) (17)

The update of the state estimate covariance matrix is of
paramount importance to the SLAM problem. Under-
standing the structure and evolution of the state covariance
matrix is the key component to this solution of the SLAM
problem.

III. Structure of the SLAM problem

In this section proofs for the three key results underlying
structure of the SLAM problem are provided. The impli-
cations of these results will also be examined in detail. The
appendix provides a summary of the key properties of pos-
itive semi-definite matrices that are invoked implicitly in
the following proofs.

A. Convergence of the map covariance matrix

The state covariance matrix may be written in block
form as

P(i|j) =
[
Pvv (i|j) Pvm(i|j)
PT

vm(i|j) Pmm(i|j),
]

where Pvv (i|j) is the error covariance matrix associated
with the vehicle state estimate, Pmm(i|j) is the map covari-
ance matrix associated with the landmark state estimates,
and Pvm(i|j) is the cross-covariance matrix between vehi-
cle and landmark states.

Theorem 1: The determinant of any submatrix of the
map covariance matrix decreases monotonically as succes-
sive observations are made.
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The algorithm is initialised using a positive semi-definite
(psd) state covariance matrix P(0|0). The matrices Q and
Ri are both psd, and consequently the matrices P(k+1|k),
Si(k+1),Wi(k+1)Si(k+1)WT

i (k+1) and P(k+1|k+1)
are all psd. From Equation 16, and for any landmark i,

detP(k+ 1|k+ 1) = det[P(k+ 1|k)−
Wi(k+ 1)Si(k+ 1)WT(k+ 1)]

≤ detP(k+ 1|k) (18)

The determinant of the state covariance matrix is a mea-
sure of the volume of the uncertainty ellipsoid associated
with the state estimate. Equation 18 states that the total
uncertainty of the state estimate does not increase during
an update.
Any principle submatrix of a psd matrix is also psd (see

Appendix 1). Thus, from Equation 18 the map covariance
matrix also has the property

detPmm(k + 1|k + 1) ≤ detPmm(k + 1|k) (19)

From Equation 12, the full state covariance prediction
equation may be written in the form

[
Pvv (k + 1|k) Pvm(k + 1|k)
PT

vm(k + 1|k) Pmm(k + 1|k)
]
= Y1

where

Y1 =
[
FvPvv (k|k)Fv

T +Qvv FvPvm(k|k)
PT

vm(k|k)Fv
T Pmm(k|k)

]
.

Thus, as landmarks are assumed stationary, no process
noise is injected in to the predicted map states. Conse-
quently, the map covariance matrix and any principle sub-
matrix of the map covariance matrix has the property that

Pmm(k + 1|k) = Pmm(k|k). (20)

Note, that this is clearly not true for the full covariance
matrix as process noise is injected in to the vehicle location
predictions and so the prediction covariance grows during
the prediction step.
It follows from Equations 19 and 20 that the map covari-

ance matrix has the property that

detPmm(k + 1|k + 1) ≤ detPmm(k|k). (21)

Furthermore, the general properties of psd matrices ensure
that this inequality holds for any submatrix of the map
covariance matrix. In particular, for any diagonal element
σ2

ii of the map covariance matrix (state variance),

σ2
ii(k + 1|k + 1) ≤ σ2

ii(k|k).

Thus the error in the estimate of the absolute location of
every landmark also diminishes.

Theorem 2: In the limit the landmark estimates become
fully correlated

As the number of observations taken tends to infinity
a lower limit on the map covariance limit will be reached
such that

lim
k→∞

[Pmm(k + 1|k + 1)] = Pmm(k|k) (22)

Writing P(k + 1|k) as P� and P(k + 1|k + 1) as P⊕ for
notational clarity, the SLAM algorithm update stage can
be written as

P⊕ = P� −Wi(k + 1)SiWi
T (k + 1)

= P� −P�Hi
TS−1

i HiP�

= P� −
[
M1

M2

]
S−1

i

[
M1

T M2
T
]

= P� −
[
M1S−1

i M1
T M1S−1

i M2
T

M2S−1
i M1

T M2S−1
i M2

T

]
(23)

where

M1 = −P�
vvHv

T +P�
vmHpi

T

M2 = −P�
vmHv

T +P�
mmHpi

T (24)

The update of the map covariance matrix Pmm can be
written as

Pmm(k + 1|k + 1) = Pmm(k + 1|k)−M2S−1
i M2

T

= Pmm(k|k)−M2S−1
i M2

T (25)

Equations 22 and 25 imply that the matrix M2S−1
i M2

T =
0. The inverse of the innovation covariance matrix S−1

i is
always p.s.d because the observation noise covariance Ri is
psd, therefore Equation 22 requires that M2 = 0

Pmm(k|k)Hpi
T = Pvm(k|k)Hv

T ∀i (26)

Equation 26 holds for all i and therefore the block columns
of Pmm are linearly dependent. A consequence of this fact
is that in the limit the determinant of the covariance matrix
of a map containing more than one landmark tends to zero.

lim
k→∞

[detPmm(k|k)] = 0 (27)

This implies that the landmarks become progressively more
correlated as successive observations are made. In the limit
then, given the exact location of one landmark the location
of all other landmarks can be deduced with absolute cer-
tainty and the map is fully correlated.
Consider the implications of Equation 26 upon the esti-

mate d of the relative position between any two landmarks
pi and pj of the same type.

d = p̂i − p̂j

= Gijx

The covariance Pd of d is given by

Pd = GijPGij
T

= Pii +Pjj −Pij −Pij
T
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With similar landmarks types, Hpi = Hpj and so Equation
26 implies that the block columns of Pmm are identical.
Furthermore, because Pmm is symmetric it follows that

Pii = Pjj = Pij = Pij
T ∀i, j (28)

Therefore, in the limit, Pd = 0 and the relationship be-
tween the landmarks is known with complete certainty. It
is important to note that this result does not mean that the
determinants of the landmark covariance matrices tend to
zero. In the limit the absolute location of landmarks may
still be uncertain.

Theorem 3: In the limit, the lower bound on the covari-
ance matrix associated with any single landmark estimate
is determined only by the initial covariance in the vehicle
estimate P0v at the time of the first sighting of the first
landmark.
As described previously, the covariance of the landmark
location estimates decrease as successive observations are
made. The best estimates are obviously obtained when
the covariance matrices of the vehicle process noise Q and
the observation noise Ri are small. The limiting value and
hence lower bound of the state covariance matrix can be ob-
tained when the vehicle is stationery giving Q = 0. Under
these circumstances it is convenient to use the information
form of the Kalman filter to examine the behaviour of the
state covariance matrix. Continuing with the single land-
mark environment,the state covariance matrix after this
solitary landmark has been observed for k instances can be
written as

P(k|k)−1 = P(k|k − 1)−1 +
[−Hv

T

Hp1
T

]T

R1
−1

[−Hv Hp1

]
(29)

where because Q = 0,

P(k|k − 1)−1 = P(k − 1|k − 1)−1 (30)

Using Equations 29 and 30 P(k|k)−1 can now be written
as

P(k|k)−1 =
[
P0v

−1 0
0 0

]
+Y2 (31)

where

Y2 =
[

kHv
TR1

−1Hv −kHv
TR1

−1Hp1

−kHp1
TR1

−1Hv kHp1
TR1

−1Hpi

]

Invoking the matrix inversion lemma for partitioned ma-
trices,

P(k|k) =

 P0v P0vHv

T
[
Hp1

T
]−1

H−1
p1 HvP0v H−1

p1 HvP0vH−1
p1 Hv

T
+Y3



(32)

where

Y3 =
H−1

p1 R1

[
H−1

p1

]T

k
.

Examination of the lower right block matrix of equation 32
shows how the landmark uncertainty estimate stems only
from the initial vehicle uncertainty P0v . To find the lower
bound on the state covariance matrix and in turn the land-
mark uncertainty the number of observations of the land-
mark is allowed to tend to infinity to yield in the limit

lim
k→∞

P(k|k) =

 P0v P0vHv

T
[
Hp1

T
]−1

H−1
p1 HvP0v H−1

p1 HvP0vH−1
p1 Hv

T



(33)

Equation 33 gives the lower bound of the solitary landmark
state estimate variance as H−1

p1 HvP0vH−1
p1 Hv

T
. Examine

now the case of an environment containing N landmarks,
The smallest achievable uncertainty in the estimate of the
ith landmark when the landmark has been observed at the
exclusion of all other landmarks is H−1

pi HvP0vH−1
pi Hv

T
.

If more than one landmark is observed as k → ∞, as will
be the case in any non-trivial navigation problem, then
it is possible for the landmark uncertainty to be further
reduced by theorem 1. In the limit the lower bound on the
uncertainty in the ith landmark state is written as

Ppi ,pi

∞ = min
i∈[1,N ]

{
H−1

pi HvP0vH−1
pi Hv

T
}

(34)

and is determined only by the initial covariance in the ve-
hicle location estimate P0v . Note that because Q was set
to zero in search of the lower bound the vehicle uncertainty
remains unchanged at P0v as k → ∞. In the simple case
where Hpi and Hv are identity matrices in the limit the
certainty of each landmark estimate achieves a lower bound
given by the initial uncertainty of the vehicle.
When the process noise is not zero the two competing

effects of loss of information content due to process noise
and the increase in information content through observa-
tions, determine the limiting covariance. The problem is
now analytically intractable, although the limiting covari-
ance of the map can never be below the limit given by the
above equation and will be a function of P0v,Q and R.
It is important to note that the limit to the covariance

applies because all the landmarks are observed and ini-
tialised solely from the observations made from the vehicle.
The covariances of landmark estimates can not be further
reduced by making additional observations to previously
unknown landmarks. However, incorporation of external
information, for example using an observation is made to
a landmark whose location is available through external
means such as GPS, will reduce the limiting covariance.
In summary, the three theorems derived above describe,

in full, the convergence properties of the map and its steady
state behaviour. As the vehicle progresses through the en-
vironment the total uncertainty of the estimates of land-
mark locations reduces monotonically to the point where
the map of relative locations is known with absolute pre-
cision. In the limit, errors in the estimates of any pair
of landmarks become fully correlated. This means that
given the exact location of any one landmark, the location
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of any other landmark in the map can also be determined
with absolute certainty. As the map converges in the above
manner, the error in the absolute location estimate of every
landmark (and thus the whole map) reaches a lower bound
determined only by the error that existed when the first
observation was made.
Thus a solution to the general SLAM problem exists and

it is indeed possible to construct a perfectly accurate map
describing the relative location of landmarks and simul-
taneously compute vehicle position estimates without any
prior knowledge of landmark or vehicle locations.

IV. Implementation of the simultaneous

localisation and map building algorithm

This section describes a practical implementation of the
simultaneous localisation and map building (SLAM) algo-
rithm on a standard road vehicle. The vehicle is equipped
with a millimeter-wave radar (MMWR) which provides ob-
servations of the location of landmarks with respect to the
vehicle. The implementation is aimed at demonstrating
key properties of the SLAM algorithm; convergence, con-
sistency and boundedness of the map error.
The implementation also serves to highlight a number

of key properties of the SLAM algorithm and its practical
development. In particular, the implementation shows how
generally non-linear vehicle and observation models may be
incorporated in the algorithm, how the issue of data associ-
ation can be dealt with, and how landmarks are initialised
and tracked as the algorithm proceeds.
The implementation described here is, however, only a

first step in the realisation and deployment of a fully au-
tonomous SLAM navigation system. A number of substan-
tive further issues in landmark extraction, data association,
reduced computation and map management are discussed
further in following sections.

A. Experimental setup

Figure 2 shows the test vehicle; a conventional utility
vehicle fitted with a MMWR wave radar system as the pri-
mary sensor used in the experiments. Encoders are fitted
to the drive shaft to provide a measure of the vehicle speed
and a Linear Variable Differential Transformer (LVDT) is
fitted to the steering rack to provide a measure of vehicle
heading. A differential GPS system and an inertial mea-
surement unit are also fitted to the vehicle but are not used
in the experiments described below. In the environment
used for the experiments, DGPS was found to be prone to
large errors due to the reflections caused by nearby large
metal structures (usually known as ”multi-path” errors).
The radar employed in the experiments is a 77 GHz FMCW
unit. The radar beam is scanned 360 degrees in azimuth at
a rate of 1-3Hz. After signal processing the radar provides
an amplitude signal (power spectral density), correspond-
ing to returns at different ranges, at angular increments of
approximately 1.5o. This signal is thresholded to provide a
measurement of range and bearing to a target. The radar
employs a dual polarisation receiver so that even and odd
bounce specularities can be distinguished. The radar is

Fig. 2. The test vehicle, showing mounting of the MMWR and GPS
systems

capable of providing range measurements to 250m with a
resolution of 10cm in range and 1.5o in bearing. A detailed
description of the radar and its performance can be found
in [19]. Figure 3 shows the test vehicle moving in an envi-

Fig. 3. Test vehicle at the test site. A radar point landmark can be
seen in the left foreground

ronment that contains a number of radar reflectors. These
reflectors appear as omni-directional point landmarks in
the radar images. These, together with a number of nat-
ural landmark point targets, serve as the landmarks to be
estimated by the SLAM algorithm.
The vehicle is driven manually. Radar range and bearing

measurements are logged together with encoder and steer
information by an on-board computer system. In the evalu-
ation of the SLAM algorithm, this information is employed
without any a priori knowledge of landmark location to
deduce estimates for both vehicle position and landmark
locations.
To evaluate the SLAM algorithm, it is necessary to have

some idea of the true vehicle track and true landmark lo-
cations that can be compared with those estimated by the
SLAM algorithm. For this reason the true landmark lo-
cations were accurately surveyed for comparison with the
output of the map building algorithm. A second navigation
algorithm, that employs knowledge of beacon locations is
then run on the same data set as used to generate the map
estimates (This algorithm is very similar to that described
in [20].). This algorithm provides an accurate estimate of
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true vehicle location which can be used for comparison with
the estimate generated from the SLAM algorithm.
In the following, the vehicle state is defined by xv =

[x,y, ϕ]T where x and y are the coordinates of the centre
of the rear axle of the vehicle with respect to some global
coordinate frame and ϕ is the orientation of the vehicle
axis. The landmarks are modeled as point landmarks and
represented by a cartesian pair such that pi = [xi,yi], i =
1 . . .N. Both vehicle and landmark states are registered in
the same frame of reference.

A.1 The process model

Figure 4 shows a schematic diagram of the vehicle in the
process of observing a landmark. The following kinematic
equations can be used to predict the vehicle state from the
steering γ and velocity inputs V ;

ẋ = V cos(ϕ)
ẏ = V sin(ϕ)

ϕ̇ =
V tan(γ)

L
,

where L is the wheel-base length of the vehicle. These equa-
tions can be used to obtain a discrete-time vehicle process
model in the form

x(k + 1)
y(k + 1)
ϕ(k + 1)


 =


x(k) + ∆TV (k) cos(ϕ(k))
y(k) + ∆TV (k) sin(ϕ(k))
ϕ(k) + ∆TV (k) tan(γ(k))

L


 (35)

for use in the prediction stage of the vehicle state estima-
tor. The landmarks in the environment are assumed to be
stationary point targets. The landmark process model is
thus [

xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
(36)

for all landmarks i = 1 . . . N . Together, equations 35 and
36 define the state transition matrix F(·) for the system.

A.2 The observation model

The millimeter wave radar used in the experiments re-
turns the range ri(k) and bearing θi(k) to a landmark i.
Referring to Figure 4, the observation model can be written
as

ri(k) =
√
(xi − xr(k))2 + (yi − yr(k))2 + wr(k)

θi(k) = arctan
(
yi − yr(k)
xi − xr(k)

)
− ϕ(k) + wθ(k) (37)

where wrand wθ are the noise sequences associated with
the range and bearing measurements, and [xr(k), yr(k)] is
the location of the radar given, in global coordinates, by

xr(k) = x(k) + a cos(ϕ(k))− b sin(ϕ(k))
yr(k) = y(k) + a sin(ϕ(k)) + b cos(ϕ(k))

Equation 37 defines the observation model Hi(·) for a spe-
cific landmark.

 γ ο

a

b

ϕ

θ iri

(x,y)

pi(xi,yi)

Global Reference Frame

L

(xr,yr)

Fig. 4. Vehicle and observation kinematics

A.3 Estimation equations

The theoretical developments in this paper employed
only linear models of vehicle and landmark kinematics.
This was necessary to develop the necessary proofs of con-
vergence. However, the implementation described here re-
quires the use of non-linear models of vehicle and landmark
kinematics f(.) and non linear models of landmark obser-
vation h(.).
Practically an Extended Kalman Filter (EKF) rather

than a simple linear Kalman filter is employed to gener-
ate estimates. The EKF uses linearised kinematic and ob-
servation equations for generating state predictions. The
use of the EKF in vehicle navigation and the necessary as-
sumptions needed for successful operation is well known
(see for example the development in [20]), and is thus not
developed further here.

A.4 Map initialisation and management

In any SLAM algorithm the number and location of land-
marks is not known a priori. Landmark locations must
be initialised and inferred from observations alone. The
radar receives reflections from many objects present in the
environment but only the observations resulting from re-
flections from stationary point landmarks should be used
in the estimation process. Figure 5 shows a typical test
run and the locations that correspond to all the reflec-
tions received by the radar. Only about 30% of the radar
observations corresponded to identifiable point landmarks
in the environment. In addition to these, a large freight
vehicle and a number of nearby buildings also reflect the
radar beam and produced range and bearing observations.
This data set illustrates the importance of correct land-
mark identification, initialisation and subsequent data as-
sociation. In this implementation a simple measure of land-
mark quality is employed to initialise and track potential
landmarks. Landmark quality implicitly tests whether the
landmark behaves as a stationary point landmark. Range
and bearing measurements which exhibit this behaviour are
assigned a high quality measure and are incorporated as a
landmark. Those that do not are rejected.
The landmark quality algorithm is described in detail
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Fig. 5. A typical test run. Only 30% of radar observations correspond
to identifiable landmarks

in Appendix 2. The algorithm uses two landmark lists to
record “tentative” and “confirmed” targets. A tentative
landmark is initialised on receipt of a range and bearing
measurement. A tentative target is promoted to a con-
firmed landmark when a sufficiently high quality measure
is obtained. Once confirmed, the landmark is inserted into
the augmented state vector to be estimated as part of the
SLAM algorithm. The landmark state location and covari-
ance is initialised from observation data obtained when the
landmark is promoted to confirmed status. Figure 6 shows
the computed landmark quality obtained at the end of the
test run described in this paper.
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Fig. 6. Calculated landmark qualities at the end of the test run.
Landmark quality ranges from 1 (for highest quality) to 0 (for
lowest quality). Landmarks are marked with a star. Landmarks
which are also circled are the artificial landmarks whose locations
were surveyed so that the accuracy of the map building algorithm
can be evaluated.

B. Experimental Results

The vehicle starts at the origin, remaining stationary for
approximately 30 seconds and then executing a series of
loops at speeds up to 10m/s. Figure 7 shows the overall
results of the SLAM algorithm. The estimated landmark

locations are designated by stars. The actual (true) sur-
veyed landmark locations are designated by circles. The
vehicle path is shown with a solid line. In order to com-
pute the “true” vehicle path, surveyed locations of the ar-
tificial point landmarks were used for running a map based
estimation algorithm [20]. The absolute accuracy of the
vehicle path obtained using this algorithm were computed
to be approximately 5cm.

B.1 Vehicle localisation results
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Fig. 7. The “true” vehicle path together with surveyed (circles) and
estimated (starred) landmark locations
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Fig. 8. Actual error in vehicle location estimate in x and y (solid
line), together with 95% confidence bounds (dotted lines) derived
from estimated location errors. The reduction in the estimated
location errors around 110 seconds is due to the vehicle slowing
down and stopping.

The differences between the “true” vehicle path shown in
Figure 7 and the path estimated from the SLAM algorithm
are too small to be seen on the scale used in Figure 7. Fig-
ure 8 shows the error between true and SLAM estimated
position in more detail. The figure shows the actual error
in estimated vehicle location in both x and y as a func-
tion of time (the central solid line). The figure also shows
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95% (2σ) confidence limits in the estimate error. These
confidence bounds are derived from the state estimate co-
variance matrix and represent the estimated vehicle error.
The actual vehicle error is clearly bounded by the confi-

dence limits of estimated vehicle error. The estimate pro-
duced by the SLAM algorithm is thus consistent (an indeed
is conservative). The estimated vehicle error as defined by
the confidence bounds does not diverge so the estimates
produced are stable. The jump in x error near the start
of the run is caused by the vehicle accelerating when the
model implicitly assumes a constant velocity model. The
slight oscillation in errors and estimated errors are due to
the vehicle cornering and thus coupling long-travel with
lateral errors. Selecting a suitable model for the vehicle
motion requires giving consideration to the tradeoff be-
tween the filter accuracy and the model complexity. It is
possible to improve the results obtained by assuming a con-
stant acceleration model, and relaxing the non-holonomic
constraint used in the derivation of the vehicle kinematic
equation 35 by incorporating vehicle slip. This clearly in-
creases the computational complexity of the algorithm.
The SLAM algorithm thus generates vehicle location es-

timates which are consistent, stable and have bounded er-
rors.

B.2 Map building results

Figure 9 shows the innovations in range and bearing ob-
servations together with the estimated 95% confidence lim-
its. The innovations are the only available measure for
analysing on-line filter behaviour when true vehicle states
are unavailable. The innovations here indicate that the
filter and models employed are consistent.
In addition to the ten radar reflectors placed in the en-

vironment, the map building algorithm recognises a fur-
ther seven natural landmarks as suitable point landmarks.
These can be seen in Figure 7 as stars (confirmed land-
marks) without circles (without a survey location). Some
of these natural landmarks correspond to the legs of a large
cargo moving vehicle parked in the test site. The others
do not correspond to any obvious identifiable point land-
marks, but were recognised as landmarks simply because
they returned consistent point-like radar reflections. The
landmark qualities Q calculated at the end of the test run
are shown in Figure 6.
Figures 10 and 11 show the error between the actual and

estimated landmark locations for two of the radar reflec-
tors. One of these landmarks (landmark 1) was observed
from the initial vehicle location at the start of the test
run. The second landmark (landmark 3) was first observed
about 30 seconds later into the run. Figures 10 and 11
also show the associated 95% confidence limits in the lo-
cation estimates. As before, these are calculated using the
estimated landmark location covariances. The landmark
location estimates are thus consistent (and conservative)
with actual landmark location errors being smaller than
the estimated error.
It can be seen that the initial variance of landmark 3 is

much greater than that of landmark 1. This is due to the
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Fig. 9. Range and bearing innovations together with associated 95%
confidence bounds
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Fig. 10. Difference between the actual and estimated location for
landmark 1. The 95% confidence limit of the difference is shown
by dotted lines
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fact that the uncertainty in the vehicle location is small
when landmark 1 is initialised, whereas landmark 3 is ini-
tialised while the vehicle is in motion and uncertainty in
vehicle location is relatively high. These figures also show
that there is some bias in the landmark location estimates.
However, this bias is well within the accuracy of the true
measurement (estimated to be ±0.1 m).
Figures 12 and 13 show the estimated standard devia-

tions in x and y of all landmark location estimates pro-
duced by the filter (for graphical purposes, the variances
are set to zero until the landmark is confirmed). As pre-
dicted by theory, the estimated errors in landmark location
decrease monotonically; and thus the overall error in the
map reduces at each observation. Visually, the errors in
landmark location estimates reach a common lower bound.
As predicted by theory, this lower bound corresponds to
the initial uncertainty in vehicle location.
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Fig. 12. Decreasing uncertainty in landmark location estimates
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Fig. 13. Standard deviation of the landmark location estimate for all
detected landmarks. As predicted, the uncertainty in landmark
location estimates decrease monotonically

V. Discussion and Conclusions

The main contribution of this paper is to demonstrate
the existence of a non-divergent estimation theoretic so-
lution to the SLAM problem and to elucidate upon the
general structure of SLAM navigation algorithms. These
contributions are founded on the three theoretical results
proved in section 2; that uncertainty in the relative map
estimates reduces monotonically, that these uncertainties
converge to zero, and that the uncertainty in vehicle and
absolute map locations achieves a lower bound.
Propagation of the full map covariance matrix is essen-

tial to the solution of the SLAM problem. It is the cross-
correlations in this map covariance matrix which maintain
knowledge of the relative relationships between landmark
location estimates and which in turn underpin the exhib-
ited convergence properties. Omission of these cross corre-
lations destroys the whole structure of the SLAM problem
and results in inconsistent and divergent solutions to the
map building problem.
However, the use of the full map covariance matrix at

each step in the map building problem causes substantial
computational problems. As the number of landmarks N
increases, the computation required at each step increases
as N2, and required map storage increases as N2. As the
range over which it is desired to operate a SLAM algo-
rithm increases (and thus the number of landmarks in-
creases), it will become essential to develop a computa-
tionally tractable version of the SLAM map building algo-
rithm which maintains the properties of being consistent
and non-divergent. There are currently two approaches
to this problem; the first uses bounded approximations to
the estimation of correlations between landmarks, the sec-
ond method exploits the structure of the SLAM problem to
transform the map building process into a computationally
simpler estimation problem.
Bounded approximation methods use algorithms which

make worst-case assumptions about correlatedness between
two estimates. These include the covariance intersect
method [21], and the bounded region method [22]. These
algorithms result in SLAM methods which have constant
time update rules (independent of the number of landmarks
in the map), and which are statistically consistent. How-
ever, the conservative nature of these algorithms means
that observation information is not fully exploited and con-
sequently convergence rates for the SLAM method are of-
ten impracticably slow (and in some cases divergent).
Transformation methods attempt to re-frame the map

building problem in terms of alternate map or landmark
representations which particularly have relative indepen-
dence properties. For example, it makes sense that land-
marks which are distant from each other should have esti-
mates that are relatively independent and so do not need to
be considered in the same estimation problem. One exam-
ple of a transformation method is the relative filter [23][24]
which directly estimates the relative, rather than absolute,
location of landmarks. The relative landmark location er-
rors may be considered independent thus resulting in a map
building algorithm which has constant time complexity re-
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gardless of the number of landmarks. More generally, a
number of approaches are being developed for constructing
“local map” and embedding these in a map management
process. Here, consistent (full filter) local maps are linked
by conservative transformations between local maps to gen-
erate and maintain larger scale maps. This embodies the
idea that local landmarks are more important to immediate
navigation needs than distant landmarks, and that land-
marks can naturally be grouped into localised sets. Such
transformation methods can exploit relatively low degrees
of correlation between landmark elements to generate rela-
tively decoupled sub-maps. The advantage of these trans-
formation methods is that they highlight the real issue of
large-scale map management.
The theoretical results described in this paper are es-

sential in developing and understanding these various ap-
proaches to map building. As discussed in the introduction
there are a number of existing approaches to the localisa-
tion and map building problem. The important contribu-
tion of this paper is the proof that a solution exists. Fur-
thermore it presents an algorithm that is efficient in the
sense that it makes optimal use of the observations of rel-
ative location of landmarks for estimating landmark and
vehicle locations, a property inherent in the Kalman filter.
The value of all other alternative real-time SLAM algo-
rithms that use similar information can be evaluated with
respect to this “full” solution. This is particularly true
in the case where simplifications are made to SLAM algo-
rithms in order to increase the computational efficiency.
The most effective algorithm for SLAM depends much

on the operating environment. For example, the relative
sparseness of occupied regions in the environment used for
the example shown in section 4, the grid based approaches
proposed in [11] and [10]. In an indoor environment the
use of only point landmarks as in section 4 will be ineffi-
cient as the information such as the ranges to walls will not
be utilised. The framework proposed in this paper, how-
ever, can incorporate geometric features such as lines (for
example see [25]). In environments where geometric fea-
tures are difficult to detect, for example in an underground
mine, the proposed strategy will not be feasible. Many
navigation systems used in outdoor environments relay on
exogenous systems such as GPS. Clearly if external infor-
mation is available these can be incorporated to the frame-
work proposed in this paper. This is particularly useful
in the situations where the exogenous sensor is unreliable,
for example in case of GPS the errors such as those due to
not being able to observe sufficient number of satellites or
due to multipath errors caused when operating in cluttered
environments.
The implementation described in this paper is relatively

small scale. It does, however, serve to illustrate a range of
practical issues in landmark extraction, landmark initiali-
sation, data association, maintenance and validation of the
SLAM algorithm. The implementation and deployment of
a large scale SLAM system, capable of vehicle localisation
and map building over large areas will require both further
development of these practical issues as well as a solution

to the map management problem. However, such a sub-
stantial deployment, would represent a major step forward
in the development of autonomous vehicle systems.

Appendix 1: Properties of positive semi-definite

matrices

1. Diagonal entries of a psd matrix are non-negative
2. If A ∈ Rn×n is psd then for any matrix B ∈ Rn×m,
BABT is psd.
3. If A ∈ Rn×n and C ∈ Rn×n t are both psd then det(A+
C) ≥ det(A).
4. All principal submatrices of psd matrices are psd.
5. For A ∈ Rm×m, B ∈ Rn×m and C ∈ Rn×n , if

D =
[

A B
BT C

]

is psd, then

det(D) ≤ det(A) det(C)

Appendix 2: Landmark Initialisation Algorithm

The following describes the procedure used to initialise
the landmark locations and associate observations to par-
ticular landmarks. This procedure also evaluates the qual-
ity of the landmarks. This algorithm is an essential pre-
cursor to the estimation process. It is not specific to the
radar sensor but can be generalised to any sensor capable
of observing landmarks in the environment.
Two landmark lists are maintained. One list stores land-

marks that are confirmed to be valid pi, i = 1 . . .N and
the other stores potential landmarks yet to be validated
qi, i = 1 . . .M. Initially both lists are empty. The map
management algorithm proceeds as follows.
1. Given an observation [rf , θf ] at time instant k from the
radar, the location of the landmark possibly responsible for
this observation pf = [xf ,yf ]T = g(x,y, ϕ, rf , θf ) and its
covariance Pf is calculated using the following relationship.

[
xf

yf

]
=

[
x(k)
y(k)

]
+

[
xvf (k)
yvf (k)

]

where
[
xvf (k)
yvf (k)

]
=

[
a cos(ϕ(k))− b sin(ϕ(k)) + rf cos(ϕ(k) + θf )
a sin(ϕ(k)) + b cos(ϕ(k)) + rf sin(ϕ(k) + θf )

]

and

Pf = ∇gxyϕPv∇gT
xyϕ +∇grf θfR∇gT

rf θf

where Pv is the covariance matrix of the vehicle location
estimate extracted from the state covariance matrix P(k|k)
and R is the measurement noise covariance.
2. An observation is associated with a landmark pi in the
confirmed landmark set if

dfi = (pf − pi)T(Pf +Pi)−1(pf − pi) < dmin
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where Pi is the covariance of the landmark location es-
timate pi, extracted from the state covariance matrix
P(k|k). Note that dfi is the Mahalanobis distance between
pf and pi, and its probability distribution in this case is
that of a χ2 variable with two degrees of freedom. There-
fore, a suitable value for dmin can be selected such that
the null hypothesis that pf and pi are the same is not re-
jected at some desired confidence level. Also if the above
condition results in an observation being associated with
more than one landmark p, the observation is rejected. If
accepted, the observation is then used to generate a new
state estimate.
3. If an observation cannot be associated with any con-
firmed landmark, then it is checked against the set of po-
tential landmarks for possible association. Mahalanobis
distance is again used as the criterion for association. If
an association with the potential landmark qj is justified
the new observation is used to update the location of the
potential landmark qj and its covariance Pj. In addition,
a counter cj indicating the number of associations with
landmark qj is also incremented.
4. An observation that is not associated with either a con-
firmed or a potential landmark can be considered as a new
landmark. In this case pf is added to the list of potential
landmarks as qM+1 , a counter cM+1 is initialised and the
number of the time step k is assigned to a timer tM+1.
5. The potential landmark list qi, i = 1 . . .M is then ex-
amined against the following criteria.
(a) If cj is greater than a predetermined number of asso-
ciations cmin, the landmark j is considered to be sufficiently
stable and therefore is transferred to the confirmed land-
mark list.
(b) If (k − tj) is greater than a predetermined tmax then
the landmark j has not achieved the desired minimum num-
ber of associations over a sufficient length of time. Land-
mark j is therefore removed from the potential landmark
list.
6. The probability density function (PDF) of the observa-
tions associated to a given landmark can be used to esti-
mate its “quality”. As suggested in [26] the quality Qi of
landmark i is calculated using the following equation.

Qi =

∑l
j=1

1
2π |Sj|−

1
2 exp(

νjS
−1
j νT

j

2 )∑l
j=1

1
2π |Sj|−

1
2

(38)

where l is the number of observations so far associated
with the landmark i, where vj is the innovation of the ob-
servation j associated with landmark i observed at time
k. Sj is the innovation covariance as defined by equation
14.The landmark quality Qi is the ratio between the sum of
the probability densities of the observations and the maxi-
mum value of the probability density that is achieved when
all the observations coincide with their predicted values.
Therefore landmark qualities Q lie between 0 and 1. At
reasonable intervals, landmark qualities can be calculated
and landmarks that do not achieve a predetermined Qmin

can be deleted from the map.
7. Return to step 2 when the next observation is received.
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